Minimal linear codes arising from blocking sets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Largest Minimal Blocking Sets in PG(2,8)

Bruen and Thas proved that the size of a large minimal blocking set is bounded by q ffiffiffi q p þ 1. Hence, if q 1⁄4 8, then the maximal possible size is 23. Since 8 is not a square, it was conjectured that a minimal blocking 23-set does not exist in PGð2; 8Þ. We show that this is not the case, and construct such a set. We prove that this is combinatorially unique. We also complete the spectr...

متن کامل

Minimal blocking sets in PG(2, 9)

We classify the minimal blocking sets of size 15 in PG(2, 9). We show that the only examples are the projective triangle and the sporadic example arising from the secants to the unique complete 6-arc in PG(2, 9). This classification was used to solve the open problem of the existence of maximal partial spreads of size 76 in PG(3, 9). No such maximal partial spreads exist [13]. In [14], also the...

متن کامل

On Minimal and Almost-Minimal Linear Codes

Minimal linear codes are such that the support of every codeword does not contain the support of another linearly independent codeword. Such codes have applications in cryptography, e.g. to secret sharing and secure two-party computations. We pursue here the study of minimal codes and construct infinite families with asymptotically non-zero rates. We also introduce a relaxation to almost minima...

متن کامل

Variations on Minimal Linear Codes

Minimal linear codes are linear codes such that the support of every codeword does not contain the support of another linearly independent codeword. Such codes have applications in cryptography, e.g. to secret sharing. We pursue here their study and construct asymptotically good families of minimal linear codes. We also push further the study of quasi-minimal and almost-minimal linear codes, re...

متن کامل

Blocking Linear Algebra Codes for Memory Hierarchies

Because computation speed and memory size are both increasing, the latency of memory, in basic machine cycles, is also increasing. As a result, recent compiler research has focused on reducing the e ective latency by restructuring programs to take more advantage of high-speed intermediate memory (or cache, as it is usually called). The problem is that many real-world programs are non-trivial to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2020

ISSN: 0925-9899,1572-9192

DOI: 10.1007/s10801-019-00930-6